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Abstract Efficiency of the biological pump of carbon to the deep ocean depends largely on biologically
mediated export of carbon from the surface ocean and its remineralization with depth. Global satellite
studies have primarily focused on chlorophyll concentration and net primary production (NPP) to understand
the role of phytoplankton in these processes. Recent satellite retrievals of phytoplankton composition now
allow for the size of phytoplankton cells to be considered. Here we improve understanding of phytoplankton
size structure impacts on particle export, remineralization, and transfer. A global compilation of particulate
organic carbon (POC) flux estimated from sediment traps and 234Th are utilized. Annual climatologies of NPP,
percent microplankton, and POC flux at four time series locations and within biogeochemical provinces are
constructed. Parameters that characterize POC flux versus depth (export flux ratio, labile fraction, and
remineralization length scale) are fit for time series locations, biogeochemical provinces, and times of the
year dominated by small and large phytoplankton cells where phytoplankton cell size show enough dynamic
range over the annual cycle. Considering all data together, our findings support the idea of high export flux
but low transfer efficiency in productive regions and vice versa for oligotrophic regions. However, when
parsing by dominant size class, we find periods dominated by small cells to have both greater export flux
efficiency and lower transfer efficiency than periods when large cells comprise a greater proportion of the
phytoplankton community.

1. Introduction

Phytoplankton form the base of the marine food web and play a crucial role in biogeochemical processes,
including determining the efficiency of the biological pump that exports carbon to the deep ocean. This latter
process is critical for global ocean sequestration of carbon and therefore modulation of atmospheric carbon
dioxide. Phytoplankton are extremely diverse in terms of taxonomy, morphology, and size [Cullen et al., 2002;
Margalef, 1978]. They span over 10 orders of magnitude in cell volume, and community size structure is deter-
mined by environmental factors such as temperature, nutrient, and light availability. In a sense, community
structure can be considered an integrator of environmental factors [Claustre et al., 2005]. For example, within
the phytoplankton there are strong taxonomic and functional contrasts between blooms of large aggregat-
ing and sinking diatoms, and populations of picoplankton tightly coupled with the microbial loop [Pomeroy,
1974] where most organic carbon is locally recycled. Small phytoplankton cells dominate in stable oligo-
trophic environments such as the open ocean, while larger cells can dominate biomass in variable eutrophic
environments such as upwelling, high-latitude, and coastal areas [Chisholm, 1992; Malone, 1980; Yentsch and
Phinney, 1989]. These contrasts in the function of cell size have been shown to regulate the efficiency of
exported organic matter [Dunne et al., 2005; Guidi et al., 2009].

Particulate organic carbon (POC) flux observations have been made over many decades in the interest of
understanding the biological pump of carbon to the deep ocean. The efficiency of this process depends lar-
gely on the biologically mediated export of carbon from the surface ocean and its remineralization with
depth. While there have been a variety of new techniques to observe POC flux, sediment traps have been
themost extensive temporally and geographically. POC flux observations made with sediment traps and opti-
cal imaging suggest that ecosystem structure plays an important role in POC flux [Guidi et al., 2009; Buesseler
and Boyd, 2009; Lam et al., 2011; Henson et al., 2012]. Diatom-dominated phytoplankton communities in pro-
ductive areas, such as high-latitude environments and upwelling regions, have high export efficiency, but the
exported material decays rapidly at depth because it is relatively labile and prone to remineralization in the
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upper mesopelagic. This results in a high export efficiency but low transfer efficiency in these regions.
Conversely, in lower latitude oligotrophic environments, where diatoms are largely absent, primary produc-
tion is low and mostly regenerated; consequentially, the small fraction of material that is eventually exported
is likely to be refractory and undergo relatively little degradation at depth, resulting in low export efficiency
but high transfer efficiency [Henson et al., 2012; Lam et al., 2011; Lima et al., 2014; but seeMarsay et al., 2015].

Many studies have sought to quantify the impact of phytoplankton community on POC flux observations.
These have ranged from investigations that utilize satellite imagery of chlorophyll concentration ([Chl])
and/or net primary production (NPP) to relationships that consider phytoplankton size structure (through
high-performance liquid chromatography pigments or particle imaging). The latter suggests that phyto-
plankton cell size is an important consideration. For example, Guidi et al. [2009] suggested that phytoplank-
ton composition explained 68% of the variance in flux at 400m. Dunne et al. [2005] showed biomass controls
59% of the variance in export flux, while size structure is the next most important factor, explaining 28% of
the variance. Cell size also has an impact on the remineralization of exported material. Guidi et al. [2015]
found that exported POC was more refractory and remineralization depths increased as the fraction of micro-
plankton decreased or the fraction of picoplankton increased.

Satellite remote sensing of phytoplankton functional types has recently become an active area of research.
Estimates of phytoplankton taxonomic groups, phytoplankton size classes, and particle size distribution
can now be made [IOCCG, 2014]. Guidi et al. [2015] was the first to correlate satellite estimates of phytoplank-
ton size estimated with particle imaging to an empirical coefficient representing remineralization. In the con-
text of these recent advances, we seek to investigate more broadly the connection between phytoplankton
size and export flux. We build on Guidi et al. [2015] by estimating more parameters through the use of a dif-
ferent fitting model and utilizing a broader POC flux data set. We estimate remineralization along with export
efficiency, labile fraction, and absolute exported POC flux dependent on phytoplankton size estimated from
satellite imagery. The goal of this study is to improve understanding of how phytoplankton size structure con-
trols particle export and remineralization. Passow and Carlson [2012] suggest that the greatest success in
understanding export flux processes will be met at the regional scale due to the great diversity in
ecosystem-specific food web structure. Thus, we specifically explore the impact of phytoplankton size com-
position on export flux at key time series sites and within biogeochemical provinces across the global ocean.

2. Methodology

Here we provide a brief outline of data analysis steps with details in the following sections:

1. Field measurements of POC flux from sediment traps and thorium-234 along with paired satellite esti-
mates of primary production and microplankton fraction are collected.

2. Data are grouped into biogeochemical provinces and formed into monthly, depth-binned climatologies
for both POC flux and satellite parameters.

3. Climatological years are split into times of large- and small-cell dominance.
4. POC flux climatology versus depth is characterized using the relationship of Lima et al. [2014] to retrieve

the export flux ratio, remineralization length scale, and refractory fraction.
5. Variability in retrieved parameters is interpreted in relation to ecosystem structure.

2.1. POC Flux Measurements and Satellite Products

We utilize the data set ofMouw et al. [2016], a compilation of field estimates of POC flux along with matched
satellite data products available on PANGEA (doi.pangaea.de/10.1594/PANGAEA.855600). Briefly described,
the data set comprises a total of 15,792 individual POC flux measurements acquired from public repositories
and published literature at 673 unique locations with 43% collected after 1997, concurrent with the satellite
record. Both sediment trap and 234Th measurements are included to improve the resolution of observations
in the upper 500m of the water column [Dunne et al., 2005; Henson et al., 2012; Guidi et al., 2015], with 234Th
representing 4% of the total data set. In the interest of matching the time scale of POC flux to satellite-derived
products to the greatest degree possible, we separate a subset from the sediment trap data set where indi-
vidual trap cup intervals are 30 days or less. The majority of measurements (92%) fall into this category with a
median cup interval of 14 days and a standard deviation of 6 days. We utilize all short-deployment POC flux
data, regardless of overlap with the satellite record [Lutz et al., 2007].
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To complement these in situ data, Mouw
et al. [2016] provide satellite-derived esti-
mates of net primary production (NPP,
gCm�2 d�1, vertically generalized produc-
tion model [Behrenfeld and Falkowski,
1997]), microplankton fraction (Sfm, %
[Mouw and Yoder, 2010]), and the diffuse
attenuation coefficient at 490 nm (Kd(490),
m�1). We retrieve the depth of the euphotic
zone (zeu, m) from Kd(490) [O’Reilly et al.,
2000] as 4.6/Kd(490) [Morel and Berthon,
1989]. A monthly mixed layer depth (MLD,
m) climatology derived from a variable den-
sity threshold equivalent to 0.2°C [de Boyer
Montégut et al., 2004; de Boyer Montégut
et al., 2007; Mignot et al., 2007] is also pro-
vided from Ifremer/LOS Mixed Layer Depth

Climatology group (www.ifremer.fr/cerweb/deboyer/mld). A summary of notation is found in Table 1.

Deuser et al. [1988] first proposed a “statistical funnel” defining the region of probability at the sea surface
likely to contribute to observed particle flux collected by a sediment trap. Subsequent modeling and in situ
studies [Abell et al., 2013; Deuser et al., 1990; Siegel and Deuser, 1997] resolve the surface footprint of statistical
funnels to be anywhere from 50 km to 500 km in diameter, equivalent to areas ranging between 2000 km2

and 20,000 km2. In Mouw et al. [2016], satellite data products are retrieved from global 9 km resolution ima-
gery as the median of a 5 × 5 pixel box centered on each POC flux location [Bailey and Werdell, 2006] and are
provided as a time series over the complete SeaWiFS mission (Sea-viewing Wide Field-of-view Sensor,
September 1997 to December 2010). This is a conservative statistical funnel of 2025 km2. At the time of writ-
ing only 8% of the publically available POC flux observations were measured beyond 2008, when MODIS
(Moderate Resolution Imaging Spectroradiometer) replaced the SeaWiFS record; thus, we focus our analysis
here solely on SeaWiFS.

2.2. Climatology Construction

While we would prefer to analyze the impact of size on POC flux versus depth at discrete times and locations,
the depth resolution of individual POC flux field sites as well as limited temporal overlap with satellite-derived
NPP and Sfm prevents such an analysis. As previously noted, over half the POC flux data set was collected prior
to the satellite record staring in 1997. To improve climatological coverage, we use all short-deployment
(<30 days) POC flux observations to construct climatologies, regardless of satellite overlap [Lutz et al., 2007].

To characterize average seasonal patterns in regional ecosystems, we construct monthly, depth-binned cli-
matologies for POC flux and satellite data products by pooling data into biogeochemical provinces as defined
by Longhurst [2006] (provided by VLIZ [2009]). Longhurst [2006] delineate regions expected to have similar
biogeochemical process and ecosystem structure based on the prevailing role of physical forcing as a regu-
lator of phytoplankton distributions. Provinces are defined by considering [Chl], NPP, photic depth, mixed
layer depth, and sea surface temperature. Though the physical dynamics governing the boundaries of these
provinces vary over time, a static average state is considered here because the sparseness of the POC flux
observations does not require dynamic boundaries. Throughout this text, provinces are referred to by their
standardized abbreviated short names as found in Figure 1.

With the exception of oceanographic time series locations, the temporal resolution of POC flux measured in
the global ocean is limited. Combining data into provincial monthly climatologies better resolves the large-
scale average seasonal cycle, but in some cases only a single POC flux measurement may exist across an
entire province at a specific depth in a given month. This creates a potential mismatch by pairing episodic
events in the POC flux record with well-defined satellite climatology in NPP and Sfm. In an effort to mitigate
this mismatch, POC flux data are depth binned to combine measurements with similar vertical placement in
the water column (e.g., 500m and 540m). Depth bins are centered at 20m, 50m to 500m in 50m increments,

Table 1. Summary of Notation

Description

Fz-ze POC flux at a depth below the depth of export
(mg Cm�2 d�1)

Fze POC flux at the depth of export (mg Cm�2 d�1)
ze Depth of export (m)
pze Ratio of POC flux to NPP at the depth of export, also

called export flux efficiency (%)
pz-ze Ratio of POC flux to NPP at a depth below the depth

of export (%)
α Labile fraction of POC (%)
λ Remineralization length scale (m)
NPP Vertically integrated net primary production

(mg Cm�2 d�1)
Sfm Fraction of microplankton (>20 μm) phytoplankton

cells (%)
TEz-ze Transfer efficiency at a depth below the depth of

export (%)
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and 500m to 5000m in 200m increments. Spacing is chosen to combine vertically similar measurements to
better represent an average climatology while still capturing variability throughout the water column. Across
the globe, observed POC flux is much more variable at shallower depths; below 1000m POC flux is 6
± 10mgCm�2 d�1 (mean± SD) compared with 31 ± 58mgCm�2 d�1 from the surface to 1000m [Mouw
et al., 2016].

POC fluxes are aligned in time with the midpoint of deployment. Monthly, depth-binned climatologies are
retrieved at each measurement location as the median of data grouped by month and depth bin. These loca-
tional climatologies are then aggregated by biogeochemical province, retrieving themedian across locations.
Uncertainty within each depth bin for a given month is represented as the standard deviation of grouped
POC flux estimates and is used to weight each value during further analysis.

Not all provinces contained enough depth or temporal resolution to be considered for further analysis. Of the
39 provinces containing POC flux measurement sites, 23 meet our criteria of (1) a minimum of four discrete
measurement depth bins throughout the water column, (2) data in at least two (of four) seasons for at least
one measurement depth within 300m of the depth of export, and (3) Sfm retrieved in all four seasons.
Seasons are defined as December–February, March–May, June–August, and September–November. For cri-
teria (2), most of the provinces had shallow POC flux data in all four seasons with the exception of SARC,
MONS and ARAB, which had data in three seasons and NADR and SPSG, which had data in two seasons. Of
the qualifying provinces, only 16 resolved significant fits of POC flux versus depth as described below in
section 2.5 and are shown in Figure 1.

For satellite products (NPP, Sfm, and zeu), the retrieved SeaWiFS time series at each POC flux location is first
interpolated to fill gaps less than 60 days apart using a piecewise cubic Hermite interpolating polynomial,
a procedure similar to a spline interpolation except that it restricts predicted values from extending
beyond measured amplitudes and prevents oscillations in slope between consecutive data points. Gaps

Figure 1. POC flux observation locations (filled circles) overlain with Longhurst [2006] provinces. Time series sites are noted with red filled circles. Colored provinces
(16 out of 54) indicate where enough POC flux data were present to fit with statistical confidence: the Atlantic Subarctic Province (SARC), North Atlantic Drift Province
(NADR), North Atlantic Subtropical Gyre West (NASW), Guianas Coastal Province (GUIA), South Atlantic Gyral Province (SATL), North Pacific Epicontinental Province
(BERS), Pacific Subarctic Gyres Province West (PASW), Pacific Subarctic Gyres Province East (PSAE), North Pacific Polar Front Province (NPPF), North Pacific Subtropical
Gyre Province West (NPSW), North Pacific Equatorial Countercurrent Province (PNEC), Pacific Equatorial Divergence Province (PEQD), South Pacific Subtropical Gyre
Province (SPSG), North West Arabian Upwelling Province (ARAB), and the Indian Monsoon Gyres Province (MONS).
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longer than 60 days are not filled. Climatologies are then constructed at each POC flux location as the
median of the interpolated time series grouped by month. Monthly satellite climatologies at individual
locations are combined to form a provincial climatology, again as the median value of the data set
grouped by month.

We perform a sensitivity analysis to assess the difference between combining all pixels within the province
area versus only aggregating pixels surrounding POC flux locations when retrieving provincial NPP and Sfm
climatology (data not shown). The difference between whole-area and locational-derived climatological
NPP ranges between 8 and 577mgCm�2 d�2 with a mean of 100mgCm�2 d�2. The difference in Sfm ranges
between 0.4% and 4.9% with a mean of 2.0%. In both cases, the provinces showing the largest difference are
GUIA followed by SARC. We repeat the POC flux versus depth analysis as described in section 2.5 below using
whole-area NPP and Sfm climatology and find no difference in retrieved parameters characterizing POC flux
versus depth for any province with the exception of GUIA and SARC. Given the poor spatial coverage of POC
flux measurements within each province and the insignificant differences between NPP, Sfm and retrieved
coefficients from whole-area versus location-based climatologies, we utilize location-based climatology
results throughout the rest of our analysis since they better represent the ecological processes directly influ-
encing observed POC flux.

The MLD product is already a monthly climatology. For biogeochemical provinces, MLDs at individual loca-
tions are combined to form a provincial climatology as the median value of the dataset grouped by month.
The depth of export (ze, m) is defined as the deeper of either climatological MLD or zeu [Lutz et al., 2007; Lam
et al., 2011].

It is common practice to temporally align POC flux at depth with NPP in the surface ocean by account-
ing for particulate settling velocity. Some studies assume a nominal sinking rate of 70md�1 or
100md�1 [e.g., Dunne et al., 2005; Helmke et al., 2010; Lutz et al., 2007]. Others utilize a variety of meth-
ods to quantify sinking rate including the “benchmark” method of visually matching event peaks
between sediment traps [e.g., Honjo et al., 1995, 2008], cross correlation of a time series between two
traps [Timothy et al., 2013; Muller-Karger et al., 2004], or the Fourier fit method of Xue and Armstrong
[2009]. In practice, these methods assess the shift in time between two signal shapes. The maximum
detectable sinking rate is then bounded by the minimum detectable shift in time between two traps,
which, in turn, is ultimately determined by the resolution of sediment trap cup intervals [Armstrong
et al., 2009; Xue and Armstrong, 2009]. In our case, we have combined data into monthly climatologies;
thus, the minimum signal shift we can detect is 30 days. If we take an example set of traps that are
spaced 1000m apart and shift them one or two points in time, the maximum detectable sinking rate
is 33md�1 or 16md�1, respectively. Although sinking rate estimates vary widely throughout the
global ocean, the majority fall between 100md�1 and 300md�1, well above our nominal detection
limit (see Berelson [2002] and Xue and Armstrong [2009] for summary discussions). Thus, we analyze
climatological POC flux versus depth in relation to surface NPP and Sfm trends without shifting data
in time.

2.3. Time Series Sites

Four long-term oceanographic time series locations are explored in a separate analysis of the relationship of
POC to export and remineralization: the Carbon Retention In A Colored Ocean (CARIACO) project site in the
Cariaco Basin (10.5°N, 64.7°W), K2 in the northwest Pacific (47°N, 160°E), andOcean Station Papa (50°N, 145°W).
The final time series is formed by combining data from the Bermuda Atlantic Time Series (BATS) study site
in the Sargasso Sea (31.7°N, 64.2°W) with the Ocean Flux Program (OFP, 31.8°N, 64.2°W). Combining these
datasets creates a complete water column profile with BATS sediment traps deployed ≤300m and OFP traps
deployed ≥500m. Retrieved NPP and Sfm show <1% variability between these two locations over the
SeaWiFS record, and we elect to analyze the satellite data products from BATS coordinates. All time series
locations meet the following criteria: (1) a minimum of four discrete measurement depths throughout the
water column, (2) at least one measurement depth within 300m of the depth of export, (3) data collected
throughout at least one continuous year, and (4) Sfm retrieved in all four seasons. Unfortunately, the
Hawaii Ocean Time series (HOT, 22.8°N, 158.0°W) could not be included here since POC flux is reported at
a single depth.
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2.4. Defining Ecosystem State

To determine the impact of community size structure on POC flux, monthly climatologies are split into times
dominated by large or small cells. However, some provinces show very little variability in Sfm throughout the
year (e.g., Figure 2b) demonstrating shifts in community size structure cannot be detected. To determine
which climatologies show detectable changes in ecosystem state, we define the ratio of variance/range (V/
R) as a metric of Sfm variability. We retrieve V/R for Sfm over the SeaWiFS time series for all Longhurst provinces
regardless of whether they contain POC flux locations (data not shown). Provinces with V/R greater than the
global median (0.32) are split into times when large or small cells dominate; climatologies with V/R< 0.32 are
only considered as a whole. Of the 16 provinces shown in Figure 1, six qualify for a size-dependent analysis (V/
R> 0.32): SARC, NADR, NASW, BERS, PSAW, and PSAE. Of the time series locations, BATS/OFP, K2, and OSP all
qualify for a size-dependent analysis, while CARIACO showed little change in Sfm throughout the climatolo-
gical year (Figure 2).

Figure 2. Climatological net primary production (NPP, green), percent microplankton (Sfm, orange), and POC flux (blues for
depths indicated in the legend) for the time series sites. Times of large and small dominated phytoplankton cell size are
shaded. CARIACO did not have a great enough variance in phytoplankton size structure to discriminate between large and
small dominance. The horizontal line in Sfm indicates the threshold (mean of monthly climatology) used to separate
microplankton (above the line) and picoplankton (below the line) dominance. Note different y axis scales for each subplot.
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For the provinces with detectable changes in community size structure, we perform a sensitivity analysis
comparing different thresholds for defining the shift in small-cell versus large-cell dominance. We repeat
the analysis of POC flux versus depth described in section 2.5 below for climatologies split by the mean, med-
ian, and half the range of Sfm. The fit for the large fraction of the BERS province split by half the range of Sfm
did not converge. Otherwise, confidence intervals on retrieved parameters overlap in all cases (data not
shown). Results shown here use the mean of Sfm climatology as the threshold of small versus large-cell dom-
inance (Figure 2). We utilize this regional, rather than global, mean of Sfm to delineate large and small domi-
nated regimes to assess the impact of local changes in size composition relative to the average
ecosystem state.

2.5. Export Flux and Transfer Efficiency

POC flux that sinks beyond the depth of export shows an exponentially decreasing trend with depth. This
relationship can be characterized by considering a labile fraction of POC that remineralizes near the export
depth and a refractory component that continues to sink through the water column [Lutz et al., 2002].
Prior to fitting, POC flux (Fz, mgCm�2 d�1) at each depth is first expressed as a p ratio (pz, %) by normalizing
to surface NPP (pz= Fz/NPP), representing the portion of NPP to reach each depth. The p ratio profiles are
expressed as depth below the depth of export (z-ze) [Buesseler and Boyd, 2009] and quantified using the rela-
tionship of Lima et al. [2014] using a nonlinear least squares procedure:

pz�ze ¼ pze αe� z�zeð Þ=λ þ 1� αð Þ
h i

(1)

where pze is the p ratio at the depth of export, called export efficiency, α is the labile fraction of exported POC
(%), and λ is the remineralization length scale (m). Data points are weighted by the standard deviation of POC
flux climatology during the fitting procedure. The Lima et al. [2014] parameterization is selected over Martin
et al. [1987] (Fz= F100 (z/100)

�b) due to the ability to parameterize more than a single coefficient (b) indicative
of flux attenuation related to the remineralization length scale. The refractory portion of exported POC is
retrieved as 1� α (%). Note that 1� α is not a p ratio; it represents the percentage of exported POC, not sur-
face NPP, which reaches the deep ocean and has the potential for sedimentation.

While it would be preferable to retrieve pze, α, and λ for eachmonth in the climatology, an insufficient number
of fits converge to allow for a meaningful seasonal analysis (data not shown). Instead, fitted parameters are
retrieved for both time series locations and biogeochemical provinces pooled over the entire climatology or
for times when large versus small cells dominate as described in section 2.4. Results are only included where
confidence intervals on retrieved parameters do not overlap zero. Five of the six qualifying provinces
retrieved fits for both large and small profiles (SARC, NASW, BERS, PSAW, and PSAE); retrievals for NADR
did not converge. Absolute export flux (Fze, mg Cm�2 yr�1) is retrieved as NPP× pze, for NPP integrated over
the entire year or for times of small and large dominance.

Transfer efficiency (TEz-ze) represents the fraction of exported organic matter that reaches a given depth
below the depth of export (z� ze= 100m was used here). Transfer efficiency is estimated from fitted results
as the retrieved p ratio 100m below the depth of export (p100) to pze [Buesseler and Boyd, 2009]:

TEz�ze ¼
pz�ze

pze
(2)

We explore the impact of phytoplankton size composition on the relationship between the pze, λ, 1� α, Fze,
and TE100 at time series locations and between biogeochemical provinces.

3. Results
3.1. Time Series

The four time series locations contrast in the physical, chemical, and biological drivers controlling production
and transfer of organic carbon from the surface to the deep ocean. Climatological trends in NPP, Sfm, and
measured POC flux highlight these differences (Figure 2). Net climatological NPP was highest at CARIACO
(410mgCm�2 yr�1), followed by K2 and OSP (both 160mgCm�2 yr�1) and BATS/OFP
(115mgCm�2 yr�1). The mean contribution of microplankton to each time series site increases from
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BATS/OFP (13± 3%, SD) to OSP (18 ± 4%) to CARIACO (21 ± 2%) to K2 (22 ± 9%) (Figure 2). K2 showed the
greatest variability in Sfm throughout the year (Figure 2).

When comparing results between locations as a whole, there are marked differences in the efficiency of car-
bon export and remineralization. Export efficiencies vary between time series sites consistent with greater
export in regions of greater production [Eppley and Peterson, 1979; François et al., 2002]; pze is 9%, 50%,
22%, and 13% at BATS/OFP, CARIACO, K2, and OSP, respectively (Figure 3a). However, the dynamics of remi-
neralization and transport to the deep ocean are more nuanced. Just below the depth of export, material at
K2 and OSP is more labile than at BATS/OFP and CARIACO as reflected in shallower λ and corresponding
lower TE100 (Figures 3b and 3d). The proportion of exported material reaching the deep ocean showed no
significant difference between the four locations, with 1� α averaging 8% (Figure 3c). We hypothesize the
differences between sites are related to phytoplankton composition and food web structure.

Given the limited number of locations (n= 4), broad generalizations regarding the relationship between
retrieved parameters and Sfm are challenging to quantify (Figure 4). However, time series results also repre-
sent the most comprehensive characterization of POC flux versus depth available in the oceanographic com-
munity. Trends observed for these distinct ecosystems are repeated in the provincial global analysis
(compare Figures 4 and 8). Across time series locations, pze increases with increasing Sfm. However, even
through the mean size distribution at CARIACO and K2 are similar, CARIACO has much greater annual pze
(Figure 4a). Remineralization length scale also tends to decrease with increasing size (Figure 4b), although
λ is nearly identical at K2 and OSP despite a larger contribution frommicroplankton at K2. With the exception
of CARIACO, which had a high pze compared to the other locations, greater transfer efficiencies were asso-
ciated with lower export flux efficiencies (Figure 4c). Also, the p ratio at 100m below the depth of export
(the proportion of NPP to reach z� ze= 100m) was consistently below 5% for all locations (lines in
Figure 4c), again with the exception of CARIACO at 16%. Overall, the absolute magnitude of export flux
(Fze) showed a strong positive trend with export flux efficiency for annual retrievals (Figure 4d). CARIACO is
the most coastally influenced of locations and generally represents an outlier to trends observed at time ser-
ies sites and throughout the global ocean.

CARIACO is part of the GUIA province, which does not fall above the V/R> 0.32 threshold for splitting by size.
It is the only time series site that does not demonstrate variability in Sfm throughout the year (Figure 2b). Thus,

Figure 3. Coefficients for (a) export efficiency (pze), (b) remineralization length scale (λ), (c) the refractory fraction of
exported material (1� α), and (d) transfer efficiency 100m below the depth of export (TE100) for annual results from the
time series locations. Results for pze and TE100 are significantly different between all locations. Results for λ are not sig-
nificantly different between K2 and OSP. The refractory fraction (1� α) is not different between any of the locations.
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BATS/OFP, K2, and OSP are split by large and small dominated periods (Figure 2). Export efficiency from cli-
matologies split into large/small periods does not follow the same trend with Sfm as seen for annual relation-
ships. While BATS/OFP can be split by size, fitted parameters are not different between large and small
dominated periods (Figures 5a–5f). At K2 and OSP, pze is higher during small dominated periods by 9%
and 5%, respectively (Figures 5h and 5n). However, this higher efficiency does not always correspond with
a greater absolute flux; error bars for Fze at K2 overlapped between small and large dominated periods while
small regimes at OSP are higher by 4mgCm�2 yr�1 (Figures 5l and 5r). Like annual results, remineralization
length scale is deeper at K2 and OSP for periods dominated by small cells, although error bars overlapped for
all of the locations. At OSP, the proportion of exported material reaching beyond the mesopelagic was higher
during large-cell dominated times by 12%. K2 showed no difference in the refractory fraction between small
and large dominated periods (Figure 5k).

3.2. Global Provinces

Pze, λ, 1� α, and Fze show variability between the 16 provinces for which POC flux parameters are retrieved
(Figure 6). Export flux efficiency (pze) is high in productive coastal systems and increases with latitude
(Figure 6a). It is greatest (33%) in GUIA, which is influenced by the Amazon River outflow. In the northern
Pacific, pze shifts from BERS (33%) in the subarctic through PSAW/PSAE (22% and 17%, respectively) and
NPPF (8%), as provinces transition between the Bering Sea and the North Pacific Polar Front. Pacific equatorial
provinces PNEC and PEQD are both 8%. In the northern Atlantic, pze again shifts north to south from SARC
(16%) to NADR (9%) and NASW (8%). The lowest pze value (0.5%) is found in the South Atlantic gyre (SATL).

Figure 4. Relationships between (a) export efficiency (pze) versus mean percent microplankton (Sfm), (b) remineralization
length scale (λ) versus Sfm, (c) transfer efficiency to 100m below the depth of export (TE100) versus pze, and (d) absolute
POC flux magnitude (Fze) versus pze for time series locations. The shaded region in Figure 4d indicates the 95% confidence
interval of the regression. Size of the markers in Figures 4c and 4d are proportional to λ. Increases in microplankton fraction
were associated with higher export efficiency, shallower remineralization length scale, and lower transfer efficiency.
Absolute POC flux at the depth of export was significantly correlated with export efficiency.
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In general, the subtropical gyres (NADR, NASW, SPSG, NPSW, NADR, and SATL), transitional polar (NPPF), and
Indian Ocean (MONS and ARAB) display moderate to low pze values (4%–10%). In summary, productive eco-
systems have greater export efficiency, while oligotrophic ecosystems show low export efficiency [Henson
et al., 2012] resulting from local recycling of organic carbon through a tightly coupled microbial loop
[Pomeroy, 1974].

Remineralization is spatiallymorevariable (Figure 6b). The shallowest length scales (λ) (11m–61m)are found in
Amazon River influenced (GUIA), North Pacific high-latitude provinces (BERS, PSAW, PSAE), and South Atlantic
subtropical gyre (SATL). Deepest λ (307m–495m) are found in the Indian Ocean (ARAB andMONS), the Pacific
equatorial provinces (PNECandPEQD), and in the SouthPacific subtropical gyre (SPSG). Intermediate λ (154m–

291m) are found in the interface between theNorth Pacific subtropical and subpolar gyres (NPPF), thewestern
province of the North Pacific subtropical gyre (NPSW), and throughout the North Atlantic (SARC, NADR, and
NASW) (Figure 6b). As a generalization, in the Pacific Ocean, λ is shallow at high latitudes and deepens toward
transitional provinces between the subtropical and subpolar gyres. Deepest λ are observed at gyre interfaces
and in provinces influenced by equatorial upwelling. Gyre provinces tend to have intermediate to deep λ in
both the Pacific (NPSW, and SPSG) and Atlantic (NASW). SATL is the exception with a very shallow λ (11m). In
the Indian Ocean, the coastal and monsoonal provinces both have deep λ (336 and 495m, respectively).

In addition to pze and λ, the labile (α) and subsequent refractory (1� α) fractions of POC flux are esti-
mated. The latter represents the proportion of exported POC reaching the deep ocean and the potential
for sedimentation (Figure 6c). The greatest 1� α (82%) is found in the South Atlantic subtropical gyre
(SATL). The median p ratio for depths greater than 3000m at SATL is 0.4%, very close to the export effi-
ciency (pze) of 0.5%. Thus, the refractory portion of exported POC is very high. The next highest 1� α are
found in the Indian Ocean (MONS and ARAB, 22–23%) followed by the North Pacific subtropical gyre
(NPSW, 20%). All other provinces have a refractory fraction of less than 10%.

The magnitude of POC flux at the depth of export (Fze) is helpful to consider when assessing the spatial varia-
bility of annual POC flux magnitude (Figure 6d). Generally, higher Fze are found in regions known for higher
primary production. The greatest Fze is found in GUIA (134mgCm�2 d�1), which is highly influenced by the

Figure 5. The p ratio versus depth below the depth of export pooled by times in the climatology dominated by large and small cells for time series sites fit with
equation (1). Results show export efficiency (pze), remineralization length scale (λ), transfer efficiency to 100m below the depth of export (TE100), refractory frac-
tion of exported POC (1� α), and POC flux at the depth of export (Fze) for (a–f) BATS/OFP, (g–l) K2, and (m–r) OSP. CARIACO did not have a great enough variance in
phytoplankton size structure to discriminate between large and small dominance. Lighter and darker shades indicate small and large dominance, respectively. Stars
indicate where 95% confidence intervals in retrieved parameters do not overlap.
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Amazon River outflow (Figure 6d). The next highest Fze is found in high-latitude provinces in the Northern
Hemisphere: BERS and SARC (72 and 49mgCm�2 d�1, respectively) followed by PSAW, PASE, and NADR that
range between 24 and 34mgCm�2 d�1. The Northern Indian Ocean (ARAB) and transitional province
between the North Pacific subtropical and polar regions (NPFF) have Fze of 17mgCm�2 d�1. Low Fze,
between 4 and 13mgCm�2 d�1, are found in the subtropical gyres of all oceans (NPSW, SPSG, NASW, and
MONS) and the equatorial Pacific (PNEC and PEQD). The lowest Fze of 0.4mgCm�2 d�1 is in SATL, resulting
from a very shallow remineralization length scale and low export efficiency.

Six provinces met the criteria (V/R> 0.32) for separation into periods dominated by large and small cells. Five
are able to resolve fits with equation (1): BERS, NASW, PSAE, PSAW, and SARC; fits for NADR did not converge
(Figure 7). Of these, BERS, NASW, and PSAE had lower export flux efficiency (pze) during times dominated by
large cells. SARC showed the opposite trend (Figure 7a). Remineralization length scale (λ) is consistently dee-
per for periods dominated by large cells, though error bars overlap for NASW and SARC. Retrieved refractory
fraction (1� α) is not different between size-dominated periods for any of the provinces. The inability to sepa-
rate 1� α is not surprising as POC flux is most variable in the upper 500m of the water column, and 1� α is
dependent on data at depth. POC flux at the depth of export (Fze) is generally larger for periods dominated by
large cells, with the exception of PSAE.

By considering pze and λ together with transfer efficiency 100m below the depth of export (TE100), we seek to
understand the relationship between surface processes and phytoplankton community composition that set

Figure 6. Maps of (a) export flux efficiency (pze), (b) remineralization length scale (λ), (c) refractory fraction of exported POC (1� α), and (d) POC flux at the depth of
export (Fze) for provinces with robust fits with equation (1).
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the strength (pze) and efficiency (TE100) of the biological pump, and how λ is related to both. For Figure 8a, we
follow Buesseler and Boyd [2009] by plotting pze against TE100 and with λ expressed as the size of the marker
and the mean Sfm as the color of the marker. Contour lines indicate the p ratio 100m below the depth of
export (p100). Greater strength and efficiency of the biological pump are characterized by higher pze and
TE100 values. Across all provinces, climatological data fall at or under the 10% contour (Figure 8a), indicating
that less than 10% of NPP typically reaches 100m below the depth of export. Generally, regions with a greater
proportion of larger cells had higher Fze and pze, lower TE100 and shallower λ (Figures 8a and 8b). When par-
sing the climatology by periods of time dominated by large and small cells, in all provinces TE100 and λ were
higher and pze was lower for large-cell dominated periods (Figure 8c). Additionally, Fze was higher for large
dominated periods in all provinces except PSAE (Figure 8d).

We consider each of the fitted parameters from equation (1) as they relate to Sfm using type II linear regres-
sion for either standard (pze and λ) or log transformed (1� α and Fze) data. Bayes factors (BF10, unitless) are
retrieved to assess fit significance [Wetzels and Wagenmakers, 2012]. Briefly, Bayes factors represent the like-
lihood that data occur under one model versus another. In the case of linear regression, BF10 compares the
ratio of the likelihood that a slope should be included in the model (slope = nonzero) versus that it should not
(slope= 0). Bayes factors can be interpreted literally, so that BF10 = 2means the data are 2 times more likely to
be explained by including a nonzero slope in the model versus not. Thus, BF10> 1 provide evidence the
retrieved slope is significant, while BF10< 0 indicate that the slope is 0. Both Fze and pze increase along with

Figure 7. Percent microplankton (Sfm) climatology and p ratio versus depth below the depth of export for the five provinces where fits with equation (1) could be
resolved with statistical confidence for times of the year split into large and small dominance. Bar graphs show export efficiency (pze), remineralization length scale
(λ), the refractory fraction of exported POC (1� α), and POC flux at the depth of export (Fze) for (a–f) BERS, (g–l) NASW, (m–r) PSAE, (s–x) PSAW, and (y–dd) SARC.
Lighter and darker shades indicate small and large dominance, respectively. Stars indicate where 95% confidence intervals on retrieved parameters do not overlap.
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Sfm (Figures 9a and 9d), suggesting that both the magnitude and efficiency of export flux increases as larger
cells make up a greater portion of the community. The relationship with Fze is particularly strong with
BF10 = 64. On the other hand, 1� α decreases with increasing Sfm (Figure 9b), suggesting that once exported,
POC from large-cell regimes is more labile within the twilight zone. Although retrieved slope for λ versus Sfm
indicates a shallowing of the remineralization length scale with increasing Sfm, that BF10 = 0.2 indicates the
slope was not significant.

4. Discussion
4.1. Time Series Sites

Differences in export flux efficiency and remineralization between oceanographic time series locations can be
related to a combination of phytoplankton size structure, species composition, and local food web dynamics.
When comparingbetween time series locations, and thus different ecosystems, pze is positively correlatedwith
both Sfm and Fze (Figure 4). However, despite almost identicalmeanannual Sfmof 21%and22%atCARIACOand
K2, respectively, the export and remineralization of POC is markedly different between the two locations
(Figure 3). The phytoplankton assemblage at CARIACO is diverse and varies in association with El Niño–
Southern Oscillation (ENSO) events that correspond with the introduction of pelagic plankton into the coastal
species community [Montes et al., 2012; Pinckney et al., 2015; Romero et al., 2009]. The majority of primary

Figure 8. Export flux efficiency at the depth of export (pze) versus transfer efficiency 100m below the depth of export
(TE100) for (a) whole provinces and (c) provinces split by large and small dominated periods. Contour lines indicate the p
ratio 100m below the depth of export (p100). These figures represent the strength and efficiency of the biological pump,
where the upper right hand corner of each subplot would be the most efficient. The size of the marker is proportional to
remineralization length scale (λ) and the color of the marker represents the percent microplankton (Sfm) (Figure 8a) or
province (Figure 8c). POC flux at the depth of export (Fze) versus pze for (b) whole provinces and (d) provinces split by large
and small dominance. Marker size and color as in Figures 8a and 8c. Open and closed circles in Figures 8c and 8d represent
small and large dominated periods, respectively.
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production occurs close to the surface (<50m), and most remineralization takes place above the depth of
anoxia at 250m [Montes et al., 2012]. Our annual results are consistent with these observations: median clima-
tological ze (80 ± 10m, SD) plus retrieved λ (77 ± 14m, 95% confidence interval) is well above the 250m anoxic
horizon. Our estimate of pze (50%, Figure 3a) for CARIACO is slightly higher than those reported in Thunell et al.
[2007] andMontes et al. [2012] of up to 44%, although error estimates between data shown here and literature
results would overlap. Export flux efficiency at CARIACO has been directly related to ballasting materials, such
as opal and calcium carbonate from diatoms, foraminifera, and coccolithophores [Montes et al., 2012], rather
than aggregation through higher trophic levels, although regional dynamics may be shifting in response to
changes in trade wind intensity [Pinckney et al., 2015]. This is in direct contrast to K2 in the Western Subarctic
Gyre of the Pacific Ocean, which has an active migrating zooplankton community [Buesseler et al., 2008] and
where large-celled diatom species (upward of 80μm) dominate the phytoplankton community even during
nonbloom periods resulting in some of the highest observed POC:PIC in the world [Buesseler et al., 2008;
Honda, 2003;Honda et al., 2006, 2015]. Thus, while export flux efficiency at K2 is still relatively high (22%) when
compared to BATS/OFP (Figure 3) or small-cell dominated global provinces (Figure 6), it is lowwhen compared
with CARIACO (50%), consistent with recycling through higher trophic levels in the surface layer. This suggests
local phytoplankton community composition and grazer dynamics, in addition to overall size structure, play a
role in controlling POC export and contribute to variability observed in pze versus Sfm (Figures 4 and 9). In the
literature, export flux ratios reported for K2 on event-scale timeframes range from 11 to 21% [Buesseler et al.,
2008], to 31% [Honda et al., 2015], to 17–46% with an annual mean of 29% [Kawakami and Honda, 2007]. Our
estimate for annual pze at K2 falls within this range (Figure 3). The active transport of material by diel zooplank-
ton migration translates into a loss of POC near the depth of export [Buesseler et al., 2008], shallowing λ and
decreasing T100 as also seen in our results (Figures 4b and 4c): ~90%of exportedmaterial at K2 is lost in the first
100m below the depth of export compared with ~68% for CARIACO.

Figure 9. Relationships between mean percent microplankton (Sfm) and (a) export flux efficiency (pze), (b) refractory frac-
tion (1� α), (c) remineralization length scale (λ), and (d) POC flux at the depth of export (Fze) for fitted provinces. Provinces
are colored as in Figure 1. Regressions are Type II with data circled in red excluded as outliers. Shaded regions represent the
95% confidence interval of the regression fit. Increases in microplankton fraction were associated with greater export
efficiency, lower refractory fractions, and greater absolute exported POC.
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The phytoplankton community at OSP had a mean Sfm of 18%, lower than both K2 and CARIACO (Figure 2),
although net annual production is almost identical to K2. OSP is located in the northeast Pacific Ocean in
the southern part of the Alaska Gyre in a high-nutrient low-chlorophyll (HNLC) region that is iron limited
[Mackinson et al., 2015; Timothy et al., 2013; Wong et al., 1999]. Diatoms, coccolithophores, and foraminifera
contribute significantly to POC flux at OSP, although there is a large interannual variability in species com-
position related to ENSO events [Timothy et al., 2013; Wong et al., 1999]. The ratio of PIC to biogenic silica in
middepth sediment traps ranges between 1.0 and 1.5 throughout the year [Wong et al., 1999] placing equal
importance on these two ballasting materials, in contrast to K2, which is dominated by silica. Export flux
efficiency at OSP was 13%, midway between BATS/OFP and K2 (Figure 3a). This value is lower than f ratios
for the region (27–36%) [Timothy et al., 2013], but higher than the export flux efficiency of 3.1% reported by
Timothy et al. [2013] using traps at 200m. The authors propose that this discrepancy was due to the mis-
match of actual export depth versus sediment trap deployment at a consistent 200m. For our data set,
mean ze was 81 ± 10m (SD), which is ~100m above the 200m trap throughout the year. Thus, we retrieve
p100, the fitted ratio of POC flux to NPP at 100m below the depth of export, which should be equivalent to
the export flux ratio reported by Timothy et al. [2013] for the 200m trap deployment. Our p100 was 3%, indi-
cating agreement. This example underscores the importance of accurate POC flux measurements close to
the depth of export for the retrieval of pze as labile material is quickly lost when transfer efficiency is low. It
also highlights the importance of retrieving pze from a water column profile rather than a single discrete
measurement depth: an important consideration when planning future field campaign efforts. The remi-
neralization length scale at OSP overlaps that of K2 (Figure 3c), although transfer efficiency is more than
double (24% at OSP versus 10% at K2). This is consistent with grazer dynamics at K2 as well as other litera-
ture suggesting siliceous ballasting material is more labile than carbonate [François et al., 2002].

At the other end of the spectrum, BATS/OFP is dominated by picoplankton and nanoplankton throughout
the year and the location had the lowest annual Sfm of the time series sites (Figure 2) [Brew et al., 2009;
Helmke et al., 2010; Krause et al., 2009]. Export flux efficiency at BATS/OFP was 9%± 1%, the lowest of the time
series locations. This result agrees well with annual export efficiencies reported in Lomas et al. [2013] of 5–
10%. Remineralization length scale is the deepest of all time series locations by at least a factor of 2 at 158
± 26m (Figure 3b), which translates into a high transfer efficiency of 56% (Figure 3d). Thus, while 90% of
material at BATS/OFP is either respired within the surface layer or laterally transported from the site, exported
material from these smaller cells is more refractory than other locations as less than half is lost close to the
export depth.

While pze is positively correlated with both Sfm and Fze between time series locations (Figure 4), when indivi-
dual sites are split by large and small, the local response to changes in community size structure was some-
what different (Figure 5). At BATS/OFP, microplankton contribution increases from 10 to 17% from December
through March (Figure 2), concurrent with the winter/spring bloom in the North Atlantic Subtropical Gyre
[Lomas et al., 2013; McGillicuddy et al., 1998]. Diatoms and coccolithophorids become more prevalent [Brew
et al., 2009; Helmke et al., 2010; Krause et al., 2009], although common species, such asMinidiscus sp., are small
(<5μm) [Lomas et al., 2009] and would not be classified as microplankton in our retrieval. We see no differ-
ence in export or remineralization at BATS/OFP between large and small dominated regimes. This is consis-
tent with Helmke et al. [2010], who also found a low seasonal variance of <1% difference in export efficiency
at 200m throughout the year.

At both K2 and OSP, there was a decrease in export flux efficiency at times dominated by microplankton
(Figure 5). At K2, pze shifts from 24% to 15% as microplankton contribution increases along with NPP during
summer and fall months (Figure 5). This is accompanied by a shallowing of λ, although error bars overlapped.
Ultimately, 1% of exported material reaches the deep ocean regardless of overlying size class. These results
are consistent with reported grazer community response to times of high production [Wilson et al., 2008].
Honda et al. [2015] also report a negative correlation between primary production and the export flux ratio
at K2. However, the literature is mixed for this region with other studies reporting increases (17% to 46%)
[Kawakami and Honda, 2007] and decreases (21% to 11%) [Buesseler et al., 2008] in export flux efficiency con-
current with the summer bloom as larger cells become more prominent. OSP also shows a decrease in pze
from 17% to 13% as microplankton becomemore dominant (Figure 5). While λ also shallows at OSP for larger
cells, again error bars overlapped. However, material from microplankton was ultimately more refractory as
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1� α was 17% compared with 5% during times dominated by small cells. These values agree well with the
estimates Lampitt and Antia [1997], who report a p ratio at 2000m of 1.8–2.1% at OSP. In our case, this would
be equivalent to pze × (1� α), which is 2% when large cells dominate. Our results add weight to the growing
body of literature underscoring the importance of picoplankton contribution to POC flux both at time series
locations and throughout the ocean in general [Brew et al., 2009; Lomas and Moran, 2011; Mackinson et al.,
2015; Richardson and Jackson, 2007].

4.2. Global Provinces

Each biogeochemical province has different physical dynamics forcing biological ecosystem structure and
function. As such, we would not expect uniform response of export flux across the globe [Passow and
Carlson, 2012; Guidi et al., 2015]. Though it only retrieves a single empirical coefficient representative of remi-
neralization, the Martin et al. [1987] equation is widely used. This means there are few studies to which pze,
1� α, and Fze could be directly compared. One such study is the modeling efforts of Lima et al. [2014],
who retrieve pze, λ, and α throughout the global ocean for annual mean POC flux profiles estimated at indi-
vidual model grid points. Results from the polar North Pacific, equivalent to the BERS province, are not well
resolved by Lima et al. [2014] and are excluded from this discussion. Annual export efficiency from Lima et al.
[2014] showed similar trends to those seen here with pze increasing with latitude (Figure 6a). The lowest
values (≤5%) are reported in the South Atlantic, equivalent to our results for the SATL province (<1%).
Throughout the rest of the oceans, absolute values of pze found in Lima et al. [2014] are identical to our results
for all provinces with three exceptions: the Amazon coastal province (GUIA), where we report a higher pze of
33% compared to their 9%, and the Indian Ocean provinces (ARAB and MONS), where we report lower pze of
5% compared to their 9%–15%. Results for 1� α are also similar between the two studies, with refractory frac-
tions throughout most of the ocean at or below 20%. The only notable difference is in the South Atlantic
(SATL) where we retrieve 1� α= 82%, compared with 1� α= 10% for Lima et al. [2014]. These differences
are potentially related to model parameterization. Throughout the North Subtropical Atlantic, as defined
by Lima et al. [2014], which would include the GUIA province, their model repeatedly underestimates field
measurements of POC flux at shallow depths, consistent with also underestimating pze compared to what
we observe. Their model performs better in the Indian Ocean but tends to slightly overestimate POC flux
at shallow depths, again consistent with the discrepancy of higher pze than retrieved in our study.

Remineralization length scale can be assessed either as λ or as the remineralization coefficient (b) of Martin
et al. [1987]. Guidi et al. [2015] estimate b for the same Longhurst provinces used here. Likewise, the modeling
study of Henson et al. [2012] considers global patters in b on a finer scale. We discuss trends in remineraliza-
tion found by Guidi et al. [2015] and Henson et al. [2012] since b and λ cannot be directly compared along with
a direct comparison of our results to λ retrieved by Lima et al. [2014]. Both Guidi et al. [2015] and Henson et al.
[2012] found lower b (equivalent to deeper remineralization) toward the equator, with the deepest reminer-
alization in the southern Indian Ocean. Our results agree well, with the shallowest λ at high latitudes and the
deepest λ toward the equator. Henson et al. [2012] predict deeper remineralization in the equatorial Pacific
than shown for the same region in Guidi et al. [2015]; our results agree with the former. There is also some
disagreement in SATL where our estimates suggest shallower remineralization than retrieved in either of
these two studies (Figure 6b). Guidi et al. [2015] retrieve b in a greater number of provinces by including
Underwater Vision Profiler (UVP) data. The UVP observes particles greater than 100μm, which includes only
chain-forming diatoms or particle aggregates [Stemmann and Boss, 2012]. Disagreement in results could be a
due to a combination of increased data resolution in near surface observations and the lack of capture of
smaller particles with the UVP.

Absolute values for λ from our study agree less strongly with Lima et al. [2014] than results for pze and 1� α.
Remineralization length scale agrees well throughout the North Atlantic (SARC, NADR, and NASW) and in the
Northwest Pacific gyre region (NPSW). We retrieve equivalent locations for the deepest λ in the Indian Ocean
(ARAB and MONS) and in the Northern Equatorial Pacific (PNEC) as well as for the shallowest λ in the South
Atlantic (SATL), although absolute values are different. However, we retrieve deeper λ in the southern
Equatorial Pacific (PEQD) and gyre region (SPSG) as well as much shallower λ in the subpolar region (PSAW
and PSAE) with differences of up to 200m. Thus, Lima et al. [2014] report a deepening of λ with increasing
latitude, which is opposite to the trend we observe in the Pacific (Figure 6b) and to the trends reported in
Guidi et al. [2015] and Henson et al. [2012] although similar to that found in Marsay et al. [2015]. Marsay
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et al. [2015] consider only neutrally buoyant traps deployed in the North Atlantic but extrapolated globally.
They conclude that warmer waters found in oligotrophic regions have shallower remineralization depths
than cooler higher-latitude regions due to organic material being inherently more labile in warm surface
water. They argue that methods utilizing sediment trap data have too much reliance upon deep observa-
tions, misrepresenting POC flux attenuation in the upper few hundred meters of the water column. It is
important to point out that the neutrally buoyant traps thatMarsay et al. [2015] utilized had a maximum sam-
pling duration of 96 h, thus capture event-scale processes rather than climatological results reported here.
Further, in aiming to consider the most extensive compilation of POC flux estimates across the globe, data
from sediment traps outnumber neutrally buoyant traps or any other observational approach. However,
the POC flux data set utilized in this study considered as many shallow observations as possible and the fit-
ting criteria of ensuring POC flux observations within 300m of the depth of export should reduce reliance on
deep observations. We agree withMarsay et al.’s [2015] assessment that theMartin et al. [1987] function is an
oversimplification of POC flux attenuation over the whole water column. To help to improve this, equation (1)
resolves more parameters than the remineralization coefficient alone, potentially allowing for more targeted
discrimination of factors contributing to the POC flux profile.

The Buesseler and Boyd [2009] framework for considering export efficiency and transfer efficiency together is
helpful in comparing provinces (Figure 8a). It is important to note that Buesseler and Boyd [2009] considered
event-scale observations; thus, some of their data fall above the 20% p100 contour in contrast to climatologi-
cal results shown here. Generally, λ deepens as POC export becomes less efficient and POC transfer becomes
more efficient (i.e., TE100 increases and pze decreases). Low- to middle-latitude provinces show the highest
transfer efficiencies and lowest export flux ratios while high latitudes and the Amazon River influenced
coastal province (GUIA) have the lowest TE100 and greatest pze (Figure 8a). These general relationships agree
with previous findings. High pze and low TE100 at high latitudes suggests sinking material is labile and more
prone to remineralization (i.e., shallower λ), while at lower latitudes the small fraction of NPP exported is more
refractory (i.e., deeper λ) [Lam et al., 2011; Henson et al., 2012].

4.3. Impact of Phytoplankton Size

Under the paradigm of high export efficiency and low transfer efficiency at high latitudes and vice versa for
low latitudes [Henson et al., 2012; Lam et al., 2011; Lima et al., 2014], one expects low-latitude regions to con-
gregate in the lower right corner of Figures 8a and 8c and high-latitude regions to fall in the upper left. For
the most part, this is what we find when considering all data fitted together (Figure 8a). If we further suppose
that high latitudes see a greater impact of microplankton compared with low latitudes, we may expect that
progressing from small-cell dominated periods to large-cell dominated periods would result in moving from
the lower right to the upper left in Figure 8c. Between provinces, this is generally true. However, within a
given province over the seasonal cycle, we find the contrary: the greater presence of large cells leads to
decreased export efficiency and increased transfer efficiency (Figure 8c). This is likely due to species compo-
sition. Larger cells have a greater chance of being associated with ballasting materials; silica and carbonate
are less labile and thus result in greater transfer efficiency [Armstrong et al., 2009; Fischer et al., 2009;
François et al., 2002; Klaas and Archer, 2002].

Lam et al. [2011] hypothesize that community structure determines transfer efficiency where large cells are
transferred less efficiently than small cells. They further suggest that two regimes influence the strength
and efficiency of the biological pump: (1) low to moderate POC concentrations with constant high transfer
efficiency and (2) bloom regime where the peak of the bloom is characterized by a weak biological pump
and low transfer efficiency. They move beyond the simplistic idea of high export flux but low transfer effi-
ciency in more productive regions and vice versa for oligotrophic regions and incorporate consideration of
seasonal variation. Their effort focused on particles >53μm from their Multiple Unit Large Volume in situ
Filtration System. Ideally, their low POC and bloom regimes could be compared to our small size and large
size dominated periods, but their samples fall mostly within the PSAE, PNEC, PEQD, SANT, ANTA, and coastal
provinces where our data set showed too little Sfm variability to be split by size (PNEC and PEQD), or where
there was insufficient seasonal coverage of POC flux observations (SANT and ANTA). In our results, PSAE was
the only province in which Fze in large dominated periods (presumably similar to their bloom regime) was less
than small dominated periods (Figure 7r), so it is difficult to compare to the regions in which Lam et al. [2011]
had data. Nevertheless, we do agree with Lam et al. [2011] in finding high-latitude provinces with greater Sfm
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range have lower overall transfer efficiency than lower latitude provinces with low Sfm range. We do not find
declining transfer efficiency with a greater proportion of large cells in the ecosystem (Figure 8c). The Lam et al.
[2011] bloom regime is more difficult to compare to in part because all cells>20μm are considered together
in this study rather than those >53μm sampled by Lam et al. [2011] and because event-scale blooms are
averaged into monthly climatologies.

Similar to Guidi et al. [2009], we find more carbon is exported from the euphotic zone when larger cells dom-
inate. Absolute export flux increases with Sfm for the time series sites and all provinces (Figures 4 and 9).
When we consider times of the year dominated by small and larger cells, we find that when small cells dom-
inate, a greater proportion of the NPP is exported, but this POC is remineralized close to the depth of export,
i.e., transferred less efficiently. When large cells dominate, export efficiency is lower, but the proportion that is
exported is generally more refractory and thus sinks faster, leading to greater transfer efficiency (Figure 8)
[Armstrong et al., 2009; Fischer et al., 2009; François et al., 2002; Klaas and Archer, 2002]. This provides evidence
for a different trophic community response to large versus small cells: when larger cells are present, the
majority of labile POC is recycled within the euphotic zone, while when smaller cells dominate, labile POC
is more likely to be exported and recycled within the “twilight zone.”

While considering phytoplankton cell size, we begin to grow our understanding of particle source relation-
ship to export flux. Not surprisingly, phytoplankton size alone does not capture all the variability of the sys-
tem. Phytoplankton composition, impacting silica, and carbonate fractions of flux, no doubt plays a role. Here
we take a broad view of what can be learned about these processes at province scales by focusing just on the
size the phytoplankton cell. Looking further into phytoplankton composition could lend further insight.
Carbon export is also affected by zooplankton and other components of the food web. Siegel et al. [2014]
found direct phytoplankton contribution to total export flux was on average only 12.7%, with values greater
than 20% found only high-latitude and upwelling regions, leaving a significant portion of the export to be
controlled by flux of fecal matter from zooplankton grazing. By partitioning our analysis into provinces, we
assume similar food web structures and thus impacts of higher trophic levels on phytoplankton composition,
particle aggregation, zooplankton grazing, and feces production. In the natural world, where all processes are
aggregated in the resulting POC flux, the absolute impact of phytoplankton alone on export flux is challen-
ging to quantify, but it is clear from this analysis that the absolute magnitude of carbon flux and the efficiency
with which it is exported, remineralized, and transferred does have dependency on the size of the phyto-
plankton cell upon which the ecosystem is acting.

5. Conclusions

Due to rapid remineralization within the first 500m of the water column, shallow observations are required to
capture the impact of phytoplankton size on export flux. Deep sediment traps alone do not reveal these
impacts. Depth resolution and/or parameter variability preclude discrimination of interannual, site-specific
size impacts. As the community invests in future flux observations, prioritization of shallower observing tech-
niques, while still characterizing full water column profiles, will enable an even more robust understanding of
the role phytoplankton composition plays in carbon flux in the ocean.

Within annual climatologies composited in this study, phytoplankton size impacts on absolute export flux
magnitude and efficiency, as well as remineralization length scales, are discerned where enough data are pre-
sent and phytoplankton size composition showed dynamic range over the annual cycle. The paradigm that
more carbon is exported with larger cells holds, but when considering the efficiency of this flux, larger cells
are not more efficient. Considering all data together, we find the idea of high export flux efficiency and low
transfer efficiency in more productive regions and vice versa for oligotrophic region holds. However, when
parsing by dominant size class, we find a contrary relationship. Generally, periods dominated by small cells
have lower transfer efficiency and greater export flux efficiency than periods when microplankton comprise
a greater proportion of the phytoplankton community. When large cells dominate, the portion exported is
generally more refractory thus sinks faster, leading to greater transfer efficiency.

As pointed out as an urgent need by Lam et al. [2011], this paper connects POC flux measurements with phy-
toplankton community structure and the length of time each province spends in both size regimes. These
findings point to the importance of considering seasonal variability in phytoplankton composition in model
frameworks and the need for the export ratio and remineralization length scales to vary in both space and
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time based on community composition. This more dynamic and mechanistic view of export will lead to
improved model characterization of POC flux in the ocean as demonstrated by Lima et al. [2014], who found
increased model performance with regionally varying parameterizations of POC export and remineralization.
In addition to broad interregional impacts relating to differences in phytoplankton size distribution, our
results also support the need for consideration of local, i.e., within province, seasonal changes in POC export
efficiency and remineralization directly linked with cell size in future model development [Lima et al., 2014].

As the ocean warms, a decline in the spatial extent and temporal occurrence of large cells has been noted
[Rousseaux and Gregg, 2015]. If a trend to greater spatial and temporal dominance of small cells continues,
our results suggest that this may lead to less overall export but that material will be efficiently exported, with
the net effect being less POC transferred to the deep ocean. This has potentially significant implications for
atmospheric CO2 drawdown and carbon sequestration in the deep ocean. This effort provides a step toward
greater understanding of the impact of phytoplankton size composition on export to improve our current
estimates of carbon flux in the ocean as well as enable more robust projections for the future.
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